Counting Morse functions on the 2-sphere
نویسنده
چکیده
We count how many ‘different’ Morse functions exist on the 2-sphere. There are several ways of declaring that two Morse functions f and g are ‘indistinguishable’ but we concentrate only on two natural equivalence relations: homological (when the regular sublevel sets f and g have identical Betti numbers) and geometric (when f is obtained from g via global, orientation-preserving changes of coordinates on S2 and R). The count of homological classes is reduced to a count of lattice paths confined to the first quadrant. The count of geometric classes is reduced to a count of certain labeled trees, which is encoded by certain elliptic integrals.
منابع مشابه
Linking and Morse Theory
A. In this paper we use Morse theory and the gradient flow of a Morse-Smale function to compute the linking number of a two-component link L in S 3 , by counting the signed number of gradient flow lines passing through each component of L. We will also use three Morse-Smale functions and their gradient flows, to compute Milnor's triple linking number of three-component links by counting ...
متن کاملMorse Functions Statistics
We answer a question of V.I. Arnold concerning the growth rate of the number of Morse functions on the two sphere.
متن کاملTopological Classification of Morse Functions and Generalisations of Hilbert’s 16-th Problem
The topological structures of the generic smooth functions on a smooth manifold belong to the small quantity of the most fundamental objects of study both in pure and applied mathematics. The problem of their study has been formulated by A. Cayley in 1868, who required the classification of the possible configurations of the horizontal lines on the topographical maps of mountain regions, and cr...
متن کاملOn Primes, Graphs and Cohomology
The counting function on the natural numbers defines a discrete Morse-Smale complex with a cohomology for which topological quantities like Morse indices, Betti numbers or counting functions for critical points of Morse index are explicitly given in number theoretical terms. The Euler characteristic of the Morse filtration is related to the Mertens function, the Poincaré-Hopf indices at critica...
متن کاملMorse Position of Knots and Closed Incompressible Surfaces
In this paper, we study on knots and closed incompressible surfaces in the 3-sphere via Morse functions. We show that both of knots and closed incompressible surfaces can be isotoped into a ”related Morse position” simultaneously. As an application, we have following results. • Smallness of Montesinos tangles with length two • Classification of closed incompressible and meridionally incompressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008